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Abstract. The new data on kt distributions obtained at RHIC are analyzed by means of selected models of
statistical and stochastic origin in order to estimate their importance in providing new information on the
hadronization process, in particular on the value of the temperature at freeze-out to the hadronic phase.

PACS. 25.75.-q, 12.40.Ee, 02.50.Ey

1 Introduction

Very recently high kt distributions at RHIC have been re-
ported in [1–3]. These data are of potentially high interest
as a possible source of information on the conditions exist-
ing at the freeze-out in heavy-ion collisions. This resulted
in a number of works, mostly of statistical or thermal ori-
gin [4], stressing different possible dynamical aspects, like
the role of resonances or the flow phenomenon. In our work
we would like to show that one can account summarily for
such (and others) effects considered in the literature by us-
ing simple minimal extensions of the known statistical or
stochastic models, which were already successfully applied
in other analysis of experimental data. They are as follows.
(i) The modified statistical model inspired by Tsallis statis-
tics [5], which generalizes the usual Boltzmann–Gibbs
statistics to non-extensive systems parametrized by a non-
extensivity parameter q (for q → 1 one returns to the usual
Boltzmann–Gibbs extensive scenario); it has been already
successfully used in this context [6–8]. The parameter q
summarizes in such an approach all deviations from the
Boltzmann–Gibbs statistics including those caused by flow
phenomena and resonances [4].
(ii) A suitable adaptation of the recently proposed model
derived from the Fokker–Planck equation for the Orstein–
Uhlenbeck (O-U) process [9–11] but this time used in the
transverse rapidity space, i.e., for yt = 1

2 ln[(mt+kt)/(mt−
kt)] (where mt =

√
m2 + 〈kt〉2), in which one allows the

mass m to be treated as free parameter in order to ac-
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count for some specific features of the data (like the flow
phenomenon) which cannot be explained in a usual way.

As a kind of historical reference point we shall use the
classical statistical model developed a long time ago by
Hagedorn [12] in which the transverse momentum distri-
bution of the produced secondaries is given by the following
formula [13] (with T0 being the parameter identified with
temperature, Th denoting the so-called Hagedorn temper-
ature [12,13] and mπ being the pion mass):

d2σ

2πktdkt
= C

∫ ∞

mπ

dmρ(m)
√

m2 + k2
t K1

(√
m2 + k2

t

T0

)
;

(1)

ρ(m) =
em/Th

(m2 + m2
0)5/4 . (2)

As one can see in Fig. 1 although fits to the kt distributions
at

√
sNN = 200 GeV obtained by the BRAHMS Collab-

oration [1] are quite good, they start to deviate from the
data at the highest values of kt and became very bad there,
which is very clearly seen in Fig. 2 where we show our fits
to the STAR data [2] covering a larger span of transverse
momenta. Although one can argue that for such large val-
ues of kt the statistical approach must give way to some
more detailed dynamical calculations [4], there are exam-
ples that suitable modifications of the statistical approach
can lead to quite reasonable results in leptonic, hadronic
and nuclear collisions. What we have in mind here are
some non-extensive generalizations of the statistical model
as discussed in [6–8] and some specific realization of the
stochastic approach as proposed by [9,10,14]. In what fol-
lows we shall therefore apply these two methods to nuclear
data of [1–3].
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Fig. 1. Results of the application of the simple statistical model, cf. (1), to the data for kt distributions at
√

sNN = 200 GeV
measured for different centralities by the BRAHMS Collaboration [1]
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Fig. 2. Results of the application of the simple statistical model,
cf. (1), to the data for kt distributions at

√
sNN = 200 GeV mea-

sured for different centralities by the STAR Collaboration [2]

In next section we shall analyze the data using the non-
extensive generalization of the statistical model by means
of Tsallis statistics. In Sect. 3 we shall analyze the data
using the stochastic approach in transverse rapidity space.
Our conclusions are presented in Sect. 4.

2 Analysis of kt distributions by generalized
statistical model based on Tsallis statistics

In many fields in physics which use statistical and stochas-
tic approaches as their tools, it was recognized since some
time ago already that the usualBoltzmann–Gibbs approach
encounters serious problems when applied to systems pos-
sessing memory effects, correlations (especially long-range
correlations but also those caused by the production of
resonances in multiparticle production processes or by the
flow effects present there) or which phase space has some
(multi) fractal structure [5]. Such systems are all, in a sense,
small, by which we mean that the effective range of corre-
lations they experience is of the order of the dimension of
the system itself. Therefore they will not show the prop-
erty of extensivity leading to the Boltzmann–Gibbs form of

Table 1. Values of parameters C, Th and T0 in (1) used to obtain
the results presented in Figs. 1 and 2. The values of χ2/n.d.f. for
the BRAHMS data are the same for all centralities and equal to
19.3/23 and 18.3/23 for m0 = 0.5 and 0.55 GeV, respectively.
For the STAR data they are equal 532/32 for C.C. = 0–5%,
249/32 for C.C. = 20–30% and 308/32 for C.C. = 60–80%

BRAHMS Coll. [1] m0 = 0.5 GeV (fixed)
C.C. C Th T0

(%) (GeV) (GeV)
0–10 177 ± 11 0.180 ± 0.007 0.169 ± 0.006

10–20 127 ± 9 0.172 ± 0.008 0.162 ± 0.006
20–40 83 ± 7 0.156 ± 0.008 0.149 ± 0.007
40–60 44 ± 5 0.133 ± 0.010 0.128 ± 0.009
60–80 177 ± 11 0.095 ± 0.0001 0.093 ± 0.0001

BRAHMS Coll. [1] m0 = 0.55 GeV (fixed)
0–10 204 ± 13 0.172 ± 0.008 0.162 ± 0.006

10–20 146 ± 10 0.163 ± 0.008 0.155 ± 0.006
20–40 96 ± 8 0.148 ± 0.008 0.142 ± 0.007
40–60 51 ± 6 0.124 ± 0.010 0.121 ± 0.009
60–80 204 ± 13 0.075 ± 0.00007 0.075 ± 0.0001

STAR Coll. [2] m0 = 0.5 GeV (fixed)
0–5 816 ± 15 0.086 ± 0.0001 0.085 ± 0.0001

20–30 382 ± 7 0.077 ± 0.0001 0.076 ± 0.0001
60–80 106 ± 2 0.037 ± 0.00001 0.037 ± 0.00001

entropy, which is the basis of any statistical or stochastical
model. One can therefore argue that in such cases one has
to resort to some dynamical approach in which the effects
mentioned above would be properly accounted for. The
problem is, however, that there is no unique model of this
type and usually several approaches are competing among
themselves in describing the experimental data. The other
possibility is to realize that most probably our system is
not extensive (in the abovementioned sense) and that this
fact should be accounted for by using a non-extensive form
of entropy, for example the so-called Tsallis entropy [5].
It turns out that such situations are encountered also in
the domain of multiparticle production processes at high
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energy collisions (cf. [6], to which we refer for all details).
In fact, there already exist a number of detailed analyses
using a non-extensive approach ranging from kt distribu-
tions in e+e− annihilations [7] and in p+ p̄ collisions [8] to
rapidity distributions in some selected reactions [6]. In [7,8]
a kind of non-extensive q-version of the Hagedorn approach
has been used whereas [6] were exploring the information
theoretical approach to statistical models including as an
option also its non-extensive version1.

In our work we shall apply the Tsallis formalism, treated
as the simplest possible extension of the usual statistical
approach with parameter q (the so-called non-extensivity
parameter or entropic index) summarizing deviations from
the usual statistical approach (without, however, specifying
their dynamical origin). It leads to (T0 denotes the tem-
perature)

d2σ

2πktdkt
= C

∫ ∞

0

[
1 − (1 − q)

√
k2
t + k2

l + m2

T0

]Q

dkl.

(3)
There exist two different formulations leading to slightly
different forms of the parameter Q.
(a) In the first one uses the so-called escort probability
distributions [19], Pi = pq

i /
∑

i pq
i (cf., for example, the

analysis of kt distributions in e+e− annihilations [7] or in
pp̄ collisions [8]); in this case Q = q/(1 − q).
(b) In the second approach one uses the normal definition
of the probabilities resulting in Q = 1/(1 − q). In this
case, as shown in [15,17], the parameter q is given by the
normalized variance of all intrinsic fluctuations present in
the hadronizing system under consideration:

q = 1 + ω = 1 +
(〈β2〉 − 〈β〉2) /〈β〉2. (4)

This conjecture originates from the observation that

[1 − (1 − q)β0H0]
1

1−q =
∫ ∞

0
e−βH0f(β)dβ, (5)

where f(β) describes fluctuation of parameter β and has
the form of the Gamma distribution [15, 17] (in our case
H0 =

√
k2

l + k2
t + m2 and fluctuations are in temperature,

i.e., β = 1/T and β0 = 〈β〉 with respect to f(β))2.
We have analyzed the BRAHMS [1], STAR [2] and

PHENIX [3] data and our results are shown in Fig. 3 and
in Table 2. It turns out that both forms of the parameter
Q in (3) result in practically identical curves; therefore

1 It should be mentioned at this point that the proper for-
mulation of the Hagedorn model using Tsallis q-statistics has
been proposed in [16]. We shall not pursue this problem here.

2 It must be mentioned at this point that this suggestion,
which in [15] has been derived only for the q > 1 case, has been
shown to be valid also for the q < 1 case [17] and has been
extended to the general form of fluctuations leading then to
the new concept of superstatistics proposed in [18]. The most
recent discussion of the physical meaning of the q parameter
when applied to multiparticle production processes (and in this
context also of the possible origin of statistical formulas as well)
with relevant references can be found in [6].

here we are showing only the results obtained for Q =
q/(1 − q). The values of the parameters are also very close
to each other with a tendency of C, T0 and q estimated
by using Q = 1/(1 − q) being slightly bigger than those
obtained for Q = q/(1 − q). It is worth to stress at this
point that such a comparison of these two approaches has
been made for the first time here and, as one can see from
the presented results, it confirms the previous expectation
(made in [6]) that in case of only limited phenomenological
applications, as is the case of our work, the results from
using (3) with Q = q/(1 − q) (i.e., parameters C(a) = c,
T

(a)
0 = l and q(a) = q) are simply connected to those using

Q = 1/(1 − q) (i.e., to the parameters C(b) = C, T
(b)
0 = L

and q(b) = Q̂), namely

Q̂ � 1 − 1 − q

q
, L � l

q
, C � cq. (6)

As one can see from Table 2 these relations are indeed sat-
isfied (some small differences present could be attributed
to the fact that both sets of results represent results of sep-
arate and independent fitting procedures, without making
use of (6)). This means therefore that in all phenomeno-
logical applications one can use either of the two forms
of the parameter Q in (3), and, if necessary, to use (6)
to translate results from one scheme to another. In both
cases the pion mass value has been used, m = 0.14 GeV
(and we have checked that additional changes in mass m
of the type introduced recently in [14], would not affect the
final results as long as m is limited to, say, m < 0.2 GeV).
The estimated fluctuations of the temperature are of the
order of 30–45 MeV. It is interesting to observe that these
fluctuations are weaker at small centralities and grow for
more peripheral collisions matching very nicely similar the
fluctuations seen in the p + p data [2] shown here for com-
parison. One should add here also the result from a similar
analysis of the e+e− data [7] reporting even higher val-
ues of non-extensivity parameter q (reaching the value of
q � 1.2), i.e., much stronger fluctuations. These results
confirm therefore, for the first time, another expectation
made in [6] saying that precisely such a trend should be ob-
served. This is because (4) can also be interpreted as being
a measure of the total heat capacity Ch of the hadronizing
system (cf. [6]):

1
Ch

=
σ2(β)
〈β〉2 = ω = q − 1. (7)

As the heat capacity Ch is proportional to the volume, Ch ∼
V , in our case V would be the volume of the interaction (or
hadronization), it is expected to grow with volume and,
respectively, q is expected to decrease with V , which is
indeed the case if one puts together the results for e+e−,
pp̄ and AA collisions.

3 Analysis of kt distributions
using stochastic approach in yt space

Whereas the previous approach was concerned with the ex-
tension of the purely statistical approach the one presented
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Fig. 3. Results of the application of the non-extensive approach given by (3) with Q = q/(1− q) to the data for kt distributions
at

√
sNN = 200 GeV measured for different centralities by the BRAHMS [1] and STAR [2] Collaborations and to the data

at
√

sNN = 130 GeV as measured by the PHENIX Collaboration [3]. The results obtained using Q = 1/(1 − q) instead look
essentially the same; therefore they are not shown separately. For differences in values of obtained parameters see Table 2

now will go a bit further by modelling the hadronization
process by a kind of diffusion mechanism [9,10,14] in which
the original energy of the projectiles is being dissipated in
some well defined way into a number of produced secon-
daries occurring in a different part of the phase space3.
In the case considered here it is the diffusion process tak-
ing place in the kt space. Actually, it turns out that it is

3 It should be mentioned here that there exist also non-
extensive versions of such diffusion process applied to mul-
tiparticle production data [20] but we shall not pursue this
possibility here.

more suitable to consider such a diffusion as taking place
in the yt = sinh−1(kt/m) space. In this case one obtains
the following Fokker–Planck equation:

∂Pt(yt, t)
∂t

= γ

[
∂ytPt(yt, t)

∂yt
+

σ2
t

2γ

∂2Pt(yt, t)
∂y2

t

]
. (8)

Its solution can be expressed by a Gaussian distribution,

d2σ

2πktdkt
= CPt(yt, t) =

C√
2πV 2

t (t)
exp

[
− y2

t

2V 2
t (t)

]
, (9)
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Table 2. Values of the characteristic parameters used to fit the data on the kt distributions at
different centralities by using the non-extensive approach as given by (3) with Q = q/(1 − q) and
Q = 1/(1 − q) for the data at

√
sNN = 200 GeV obtained by the BRAHMS [1] and STAR [2]

Collaborations and at
√

sNN = 130 GeV obtained by the PHENIX Collaboration [3]. For results
obtained using Q = 1/(1 − q) we provide also explicit values of the corresponding fluctuations of
temperature as given by ∆T0 =

√
q − 1 · T0. The order of magnitude of the corresponding errors for

T0, q and ∆T0, δT0, δq and δ∆T0, respectively, are listed below as well. In the analysis we have used
errors either as provided by the experiments (for STAR and PHENIX) or assuming a systematic error
on the level of 5% (for BRAHMS)

BRAHMS Coll. [1]
(3) with Q = q/(1 − q) (3) with Q = 1/(1 − q)

δT0 = 0.005–0.007, δq = 0.003–0.005. δT0 = 0.005–0.007, δq = 0.002–0.004,
δ∆T0 = 0.001–0.002.

C.C. χ2/n.d.f. C T0 q χ2/n.d.f. C T0 q ∆T0

(%) (GeV) (GeV) (GeV)
0–10 11.2/23 1033 ± 78 0.232 1.043 11.2/23 1033 ± 78 0.223 1.041 0.045

10–20 12.9/23 797 ± 66 0.224 1.049 12.9/23 797 ± 65 0.213 1.047 0.046
20–40 12.7/23 525 ± 49 0.215 1.055 12.7/23 525 ± 49 0.204 1.052 0.047
40–60 10.5/23 304 ± 38 0.193 1.067 10.5/23 304 ± 38 0.181 1.063 0.045
60–80 2.85/22 41 ± 5 0.175 1.084 2.85/22 41 ± 5 0.161 1.077 0.045

STAR Coll. [2]
(3) with Q = q/(1 − q) (3) with Q = 1/(1 − q)

δT0 = 0.002–0.003, δq = 0.001–0.002. δT0 = 0.002–0.003, δq ∼=0.001,
δ∆T0 ∼=0.001.

C.C. χ2/n.d.f. C T0 q χ2/n.d.f. C T0 q ∆T0

(%) (GeV) (GeV) (GeV)
0–5 170/32 4684 ± 231 0.171 1.071 170/32 4686 ± 231 0.159 1.066 0.041
5–10 68/32 3393 ± 184 0.176 1.068 67.8/32 3393 ± 185 0.165 1.064 0.041

10–20 69/32 2767 ± 144 0.171 1.073 69.2/32 2768 ± 144 0.160 1.068 0.042
20–30 45/32 1928 ± 102 0.169 1.075 44.7/32 1928 ± 102 0.157 1.070 0.042
30–40 44/32 1391 ± 78 0.165 1.078 43.9/32 1391 ± 78 0.153 1.072 0.041
40–60 19/32 896 ± 50 0.153 1.085 19.2/32 896 ± 50 0.141 1.079 0.040
60–80 14/32 414 ± 25 0.137 1.095 14.2/32 413 ± 25 0.125 1.087 0.037
p + p 9.7/29 62 ± 7 0.117 1.099 9.62/29 61.9 ± 7.1 0.107 1.090 0.032

PHENIX Coll. [3]
(3) with Q = q/(1 − q) (3) with Q = 1/(1 − q)

δT0 = 0.011–0.016, δq = 0.008–0.010. δT0 = 0.011–0.016, δq = 0.005–0.011,
δ∆T0 = 0.003–0.005.

C.C. χ2/n.d.f. C T0 q χ2/n.d.f. C T0 q ∆T0

(%) (GeV) (GeV) (GeV)
0–5 5.13/29 1694 ± 409 0.201 1.049 5.1/29 1694 ± 411 0.192 1.047 0.042
5–15 3.62/29 1330 ± 316 0.199 1.051 3.6/29 1330 ± 316 0.190 1.048 0.042

15–30 5.55/29 846 ± 206 0.196 1.054 5.6/29 846 ± 206 0.186 1.051 0.042
30–60 2.63/29 433 ± 113 0.178 1.066 2.6/29 433 ± 113 0.167 1.074 0.045
60–80 10.6/29 139 ± 48 0.152 1.080 10.6/29 139 ± 48 0.141 1.062 0.035
80–92 9.10/29 74 ± 45 0.121 1.098 9.1/29 74 ± 42 0.110 1.089 0.033

with4

2V 2
t (t) =

σ2
t

γ
(1 − e−2γt). (10)

In Fig. 4 we show our results of using (9). It should
be noticed that now, following [14], we have regarded the
mass m to be a free parameter. Only then we can obtain

4 See also [9]. Actually, (9) is the same as the formula used
already a long time ago in [11].

good agreement with the data. In a sense, the variable
mass m corresponds in this approach to the non-extensivity
parameter q introduced in Sect. 2 in that it summarily
accounts for some additional effects not accounted for by
a simple diffusion process (like, for example, the effect of
resonances and flow).

In the stochastic approach considered here we do not
have direct access to the temperature T0. It is accessible
only if we additionally assume the validity of the Einstein
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Fig. 4. Results of the application of the stochastic approach as given by (9) to the data for kt distributions at
√

sNN = 200 GeV
measured for different centralities by the BRAHMS [1] and STAR [2] Collaborations and at

√
sNN = 130 GeV obtained by the

PHENIX Collaboration [3]. Notice that the mass m is treated here as a free parameter, in a way similar as in [14]

fluctuation–dissipation relation, which in our case means
that the measure of the size of diffusion (dissipation), V 2

t (t),
can be expressed by the temperature T0 and mass m:

V 2(t) =
T0

m
. (11)

Therefore our results for V 2 shown in Fig. 4 (see the inlets),
where V (t)2 increases with increasing centrality, would in-
dicate that the temperature T0, obtained by applying Ein-
stein’s relation with m kept constant, would increases with
centrality as well, contrary to what has been obtained above
by applying the q-statistical approach. We have allowed
then (following [14]) the mass m to be a free parameter

and the best fit is obtained when m decreases with cen-
trality; see the inlets in Fig. 4. The resulting temperature,
T0 � m ·V 2

t , behaves then in essentially the same way as a
function of the centrality as in the q-statistical approach,
cf., Table 3 and Fig. 55.

5 It should be stressed here that for a constant value of the
mass, m = 0.14 GeV as used for the q-statistics case above,
we would have obtained somewhat higher values of the χ2’s.
In addition, it is interesting to observe at this point that the
fact that we can fit he data within the modified stochastic
approach only by allowing for a kind of “quasiparticles” of
mass m, different for different centralities, corresponds in a
sense to introducing the parameter q into the usual statistical
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Table 3. Values of the characteristic parameters used to fit the
data on kt distributions at different centralities by using the
stochastic approach as given by (9) and presented in Fig. 4 for
the data at

√
sNN = 200 GeV obtained by the BRAHMS [1] and

STAR [2] Collaborations and at
√

sNN = 130 GeV obtained by
the PHENIX Collaboration [3]. The order of magnitude of the
corresponding errors for T0, δT0, are listed below as well

BRAHMS Coll.; δT0 = 0.008–0.012; δm = 0.024–0.031

C.C. (%) χ2/n.d.f. C T0 (GeV) m (GeV)

0–10 39.9/23 140 ± 9 0.201 0.784

10–20 24.2/23 108 ± 7 0.199 0.725

20–40 20.1/23 72 ± 5 0.196 0.671

40–60 11.9/23 38 ± 4 0.185 0.577

60–80 4.06/22 4.3 ± 0.5 0.184 0.515

STAR Coll.; δT0 = 0.004–0.006; δm = 0.009–0.014

C.C. (%) χ2/n.d.f. C T0 (GeV) m (GeV)

0–5 221/32 484 ± 22 0.169 0.533

5–10 124/32 370 ± 18 0.170 0.547

10–20 121/32 310 ± 14 0.168 0.513

20–30 92.9/32 217 ± 10 0.168 0.498

30–40 89.9/32 158 ± 8 0.165 0.473

40–60 43.9/32 99.6 ± 5.0 0.157 0.419

60–80 22.3/32 43.2 ± 2.3 0.143 0.349

p + p 17.4/29 5.29 ± 0.63 0.126 0.298

PHENIX Coll.; δT0 = 0.020–0.037; δm = 0.058–0.078

C.C. (%) χ2/n.d.f. C T0 (GeV) m (GeV)

0–5 8.06/29 161 ± 34 0.185 0.734

5–15 5.61/29 124 ± 26 0.185 0.729

15–30 7.27/29 80 ± 18 0.185 0.700

30–60 3.49/29 39 ± 9 0.177 0.594

60–80 11.1/29 12 ± 4 0.158 0.460

80–92 9.01/29 6.1 ± 3.6 0.131 0.317

4 Concluding remarks

We have provided here a systematic analysis of recent RHIC
data on kt distributions [1–3] by using three different kinds
of statistical approaches: the Hagedorn model [12], two ver-
sions of themodified statistical based onTsallis statistics [5]
and a suitable adaptation of the stochastic model pro-
posed in [9]. We have found that the Hagedorn-type model
widely used (for quick estimations) simplified version with
ρ(m) = 1, which is then just a simple Boltzmann gas model
with only one parameter, the temperature T0, fails com-
pletely even for smaller kt; cf. Table 4). However, these data
can still be reasonably well fitted either by non-extensive
extensions of the statistical model [5] or by the picture of
some suitable diffusion process taking place in transverse
rapidity space [9,10]. This is specially true if one limits itself
to the kt < 5 GeV/c range as the case of the BRAHMS [1]

model. The possible dynamical origin and meaning of such
variable mass is, however, still lacking.
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Fig. 5. Comparison of the temperatures of hadronization ob-
tained by using different approaches as given by a (3) with
Q = q/(1 − q); b (3) and Q = 1/(1 − q); c (9). In the latter
case T0 has been obtained from the values of V 2

t and m was
obtained in Fig. 4 by using Einstein’s relation: T0 = m · V 2(t)

and PHENIX [3] data, the kt < 12 GeV/c range considered
in the STAR experiment [2] seems to be already too big
to be fitted properly even with these two approaches (the
corresponding values of the χ2 are considerably bigger in
this case and the values of the parameters obtained for the
STAR and BRAHMS data, which were taken at the same
collision and at the same energy, are also different).

As is shown in Fig. 5, the temperatures T0 obtained in
the modified statistical and stochastic approaches (with
varying mass m) are essentially very similar to each other
and follow the same dependence on the centrality, namely
T0 decreases when the collision is more peripheral. How-
ever, because the stochastic approach seems to be more
dynamical than the q-statistical one (where the true dy-
namical origin of the non-extensivity parameter is not yet
firmly established, see [6,15]), we regard as the most valu-
able our finding that stochastic approach [9, 10, 14] works
so well and can serve to provide first simple estimations
of any new data in the future. On the other hand we have
also demonstrated that the two possible approaches us-
ing q-statistics are equivalent, at least in the frame of the
limited phenomenological approach presented here. One
should also stress at this point that the q-statistical ap-
proach offers unique information on the fluctuations in the
system, which can be translated into information on its
volume. Our results for AA and pp collisions taken to-
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Table 4. Comparison of investigated models: simple statistical model (i.e., Hagedorn model as given
by (1) but with ρ(m) = 1, in which case it is just a simple statistical Boltzmann gas model with
only one parameter, namely the temperature T0), non-extensive Tsallis distribution (NETD) and
Ornstein–Uhlenbeck process (O-U), using data on kt distributions at

√
sNN = 200 GeV obtained

by the BRAHMS Collaboration [1] for smallest and largest centralities

Simple statistical model, NETD (3) O-U (9)

(1) with ρ(m) = 1 (with Q = q/(1 − q))

C.C. (%) T0 q m T0 q m T0 q m

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

0–10 χ2/n.d.f. 177/23 10.2/23 39.9/23

0.302 – – 0.232 1.043 – 0.201 – 0.784

60–80 χ2/n.d.f. 567/22 2.76/22 4.06/22

0.325 – – 0.175 1.084 – 0.184 – 0.515

gether with old results for e+e− annihilations indicate in
this respect the distinct growth of the expected volume
of interactions from the most elementary annihilation pro-
cesses to the nuclear collisions.
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